
Noise Fundamentals

Severin Field

March 31, 2022

Abstract

Johnson noise and Shot noise are two major sources of electrical noise. Each of them is dependent
upon a physical constant. Johnson noise corresponds with Boltzmann’s constant (kb) which can be
measured with Nyquist’s theorem. Shot noise corresponds to the charge of an electron, which can be
measured with Schottkey’s theorem. Unfortunately, there are multiple other sources of noise that need
to be accounted for, and the amplitude of the noise is very small and spurious, so it needs to be largely
amplified and manipulated. We measured the charge of an electron as 1.61e-19 ±2.55e− 21 Coulombs
with a variation of 3.53e-40. The actual value for the charge of the electron is 1.602e-19 Coulombs. For
the Boltzmann’s constant, we measured 1.36e-23m2kgs−2K−1±5.52e−26 with a variation of 1.28e-49.
The actual value is 1.38e-23m2kgs−2K−1.

I Introduction

Noise is present across measurements that must be
made in physics as distortions to a signal. For
example, seismometer noise is the signal that a
seismometer picks up without any seismic activity.
Electrical noise is present when measuring electric
signals. Two of the sources of noise intrinsic to
electronics are Johnson noise and shot noise.

I.I Johnson Noise

Johnson noise is the noise from thermodynamic
fluctuations. Electrons bouncing off of each-other
randomly produces small currents. Since electron
movement is random, the average noise is 0, but at
any given time there is a small positive or negative
voltage across in, for example, a resistor.

Nyquist’s original discussion on black body
emissions best describe the phenomenon of John-
son noise. Illustrated below (Figure 1) is a source
resistor taken to be ideal connected by a transmis-
sion line L to a voltage source.

Propagating electric modes, moving at v = c have
the boundary condition that the potential at the
ends of the line be equal. This is satisfied when
nλ = L. Frequency relates to λ by c = fλ. Thus
the number of propagating modes relative to fre-
quency is L/C. Below is the energy dependant
upon temperature given by the Planck distribution.

Figure 1: An ideal resistor connected to a voltage
supply across a line of length L [1]:Lab Handout
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(ehf/kbt− 1)
(1)

With this information, we can find the average
power emitted from Rs as

Pe = Rs < I2j >= Rs∗ < (
Vj

Rs +Rl
)2 >

This reduces to

Pe =< V 2
j (t) > /R

Using the Planck distribution we can form the
Nyquist theorem and relate kb to measurable vari-
ables. If we can measure the Johnson voltage across
a resistor R at a temperature T, we can calculate
Boltzmann’s constant. We can use high and low
pass filters to set a known ∆F

< V 2
j (t) >= 4kbTR∆F (2)
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I.II Shot Noise

While Johnson noise comes from thermal fluctua-
tions. Shot noise comes from charge quantization
and can be observed in currents. In a flow of elec-
trons from cathode to anode, the number of elec-
trons hitting the anode, which is equivalent to the
current is proportional to the shot noise.

I2s =
1

N

∑
(Ii− < I >)2

Current is equal to the flow of electrons so

I2s = (
e

∆t
)2

∑
(ni− < n >)2 (3)

The rms value of n is
√
n, the shot noise is

I2s = 2e < I > ∆F = 2eIdc∆F

The result is Schottkys theorem relating the charge
of an electron to the DC current, its frequency
range and the shot noise it generates.
Both shot and Johnson noise are characterized as

white noise, they exhibit flat distributions across a
frequency bandwidth. By using Schottky’s theo-
rem, we can measure the charge of an electron by
isolating the shot noise from a photo current with
known parameters and an isolated bandwidth. Our
goal is to measure Boltzmann’s constant and the
charge of an electron.

II Experimental Procedure

II.I Johnson Noise Resistance De-
pendence

There are two main sections to this experiment:
studying Shot noise and studying Johnson noise.
Because the Johnson and Shot noise signals are too
small to accurately be picked up by a voltmeter, we
need to process them with an apparatus first. To
measure these noises we connect a resistor to an
amplifier and then to a high and low pass filter
to limit the frequencies we’re measuring in noise.
Recall equations (2) and (3) both depend on ∆F .
We set the cutoff frequencies to .1kHz and 100kHz.
Next we need to amplify the signal some more (we
used a gain of 600 for the initial amplifier then
passed it through another amplifier with a gain of
1500 after the filters, the total gain is then 900,000).
When this amplified signal is displayed on an os-
cilliscope, it fluctuates around 0 as expected. To
get a meaningful measure of the noise we square
the signal with a multiplier op amp. Now we can
read out the mean square noise. We need to square
the noise after amplifying it because as mentioned

in I.I, the noise fluctuates around 0 and the mean
value would come out to 0. Shottky and Nyquist’s
theorems depend on the squared noise because of
this.

The output voltage includes the mean squared
noise from other noise sources however, and we
need to factor that out to solve for < V 2

j >. The
output voltage when the gain of the preceding cir-
cuits is accounted for is:

Vout =
(< V 2

j > + < V 2
n >) ∗ (G1G2)

2

10
(4)

When R is low, Vj is low (recall Nyquist’s theo-
rem). For R = 1 Ω for example, the Vn term dom-
inates. Thus the Vn term be measured by setting
the source resistance to 1 Ω, this will drop the Vj

term in equation 4. We can then hold it constant
as it doesn’t change with R in future calculations
of Vj . When R = 1 Ω:

Vout =
(< V 2

n >) ∗ (G1G2)
2

10

To measure Boltzmann’s constant, we can plot
the power spectral density given by S =< V 2

j >
/∆F vs. the resistance. Recall from (2) that at
a fixed temperature we can find kb. By holding
the temperature constant and collecting the output
voltage with varying feedback resistors we can mea-
sure kb. ∆F is close to the area under a white noise
curve between the two cutoff frequencies (i.e. the
difference between the cutoff frequencies). How-
ever, because the high and low pass filters are im-
perfect, they follow a Gaussian distribution pattern
more closely. More on this will be discussed in the
next section, for this part of the experiment we can
gather ∆F from the following table:

Figure 2: Notice the ∆F is very close to the dif-
ference between the two cut off frequencies. [1]:Lab
Handout

II.II Johnson Noise Temperature
Dependence

Since Johnson noise also depends on T, we can hold
R constant and change the temperature to measure
Boltzmann’s constant. At T = 0K, there should be
no Johnson noise present. We attach our amplifier
to an external feedback resistor that is submerged
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in a vacuum flask containing liquid nitrogen to cool
it down. The apparatus in this section is the same
circuit and processing used in the resistance depen-
dence section, however the resistor is submerged in
liquid nitrogen in a dewar. Since we cannot stick
a thermometer into a dewar full of liquid nitrogen,
there is a diode next to the resistor. The voltage
across the diode can be used to measure temper-
ature, below is a calibration curve correlating the
voltage of the diode with the temperature within
the dewar (temperature of R). (Figure 3)

Figure 3: Diode calibration to find the temperature
of the external feedback resistor [1]:Lab Handout

Now if we find the Johnson noise using the same
method as in the resistance dependence section, we
can find kb through its temperature dependence.
However, there is one more factor that must be
accounted for. Because of the capacitive coupling
of the wire connecting the external resistor to the
electronics, the frequency bandwidth changes. We
can no longer use the values from Figure 2 because
of this.

The filters in the electronics box can be modeled
with the Buttersworth filter response [2]

< V 2
j >=

ˆ f2

f1

Sdf =

ˆ ∞

0

S(GLPGHP )
2df

Relating this to the definition of noise power
spectral density gives us

∆f =

ˆ ∞

0

(GLPGHP )
2df

This yields the results to the table of figure 2 in
Mathematica. There wire adds a capacitive compo-
nent that can attenuate high frequency components
of the noise. The transmission function of the diode

probe is:

Gc =
1√

1 + (f/fc)2

Here, fc is given by

fc =
1

2 ∗ π ∗RC

We can add this to our equation for ∆F and get:

∆f =

ˆ ∞

0

(GLPGHP ∗GC)
2df (5)

We solved this integral for a value of 9957.4 where
our high pass cutoff voltage is 1kHz, our low pass
cutoff voltage is 10kHz and the capacitance of the
wire is estimated at 100pF.

Now we have the full relationship between the
calibration voltage and the Johnson noise. If we
know the calibration voltage, we can find the tem-
perature. We can also calculate ∆F using equation
5. Lastly, we can calculate the non-Johnson noise
with the same method as last time, see equation
4. With the relationship of temperature to John-
son noise, we can once again calculate Boltzmann’s
constant.

II.III Shot Noise

Using an illuminated photodiode we can create
a stream of electrons. To measure shot noise,
we switch from a simple amplifier measuring the
noise in a resistor to a reverse biased photodiode.
The circuit below shows how the current passing
through the photodiode passes through Rf :

Figure 4: A transimpedance amplifier used to
preamplify a stream of electrons [1]:Lab Handout

The output signal (V0 is then proportional to the
photocurrent, which can be adjusted by changing
the brightness of the light. The output noise from
this configuration after running it through the elec-
tronics is:

Vout =
(R2

f ∗ I2shot+ < V 2
n >)(100 ∗G2)

10V
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Vn can be calculated in a similar fashion to what
we did in the Johnson noise section to calculate
the non Johnson noise. Instead of eliminating the
Johnson noise factor, we turn off the light so Ishot
will be 0. Then we have the Vn, which will remain
constant at varying brightness. Vn in this case is:

Vn =
Vout ∗ 10

((100 ∗G2) ∗ ∗2)

Finally, we collect data at varying the photocur-
rent. The DC current through the light relates to
the shot current by Schottky’s theorem. This is
equation 3 found in section I.I. After varying the
photocurrent and holding the bandwidth constant,
we vary the bandwidth holding the photocurrent
constant so we have the shot noise relationship with
both bandwidth and the lightbulbs current. Now
we can calculate the charge of an electron with each
of these relationships. Recall that the bandwidth
can be found using the table in Figure 2 again be-
cause we no longer have the capacitive component
affecting the ∆F.

III Results and Analysis

III.I Johnson Noise Results

Firstly, we measured the noise at 1 Ω, since the
RMS voltage varies we measured this 20 times and
took the mean for our Vout to calculate Vn

We get .5732 as our Vout and 0.00022 as the stan-
dard error. Plugging into the equation from the
previous section:

Vn =
Vout ∗ 10

((G1 ∗G2) ∗ ∗2)

=
.5732 ∗ 10

((600 ∗ 1500) ∗ ∗2)

= 7.08e− 12

After collecting the output voltage using four re-
sistors: 10Ω, 100Ω, 1kΩ, 10kΩ with 10 data points
for each to capture the volitility of the output volt-
age, we can then calculate the Johnson noise for
each datapoint. With this we found the spectral
density and thus kb for each data point. The data
can be referenced in the references section.
Recall:

Vj =
Vout ∗ 10

((G1 ∗G2) ∗ ∗2)
− Vn

kb =
< V 2

n > ∗10
4∆F

We got an average kb of 1.53e-23 with a variation
of 5.88e-25. This high variation and overestimate
is mostly due to the data collected with the 10Ω
data, with its average being a whopping 1.85e-23.
Omitting this data would yield a much closer value
to Boltzmanns constant and it includes the major-
ity of the outliers. More on why I think this is in
the conclusion.

Plotting power spectral density vs R shows kb
which goes with the slope. When plotting the
power spectral density vs. R we get figure 5.

Figure 5: Power spectral density as a function of
resistance [3]:Data

Next, for the temperature dependence we
recorded the calibration voltage vs the output
voltage. Calibration voltage can be used to
calculate temperature (see II.II). We also solved
the integral for (see II.II) to yield 9957.4Hz. We
can now calculate kb using the method we used to
it in the resistance section. With the temperature
dependent measurements at varying temperatures
between 80-250K we get a Boltzmann’s constant of
1.36e-23±5.52e−26. This is a much lower variation
and a much closer approximation to Boltzmanns
constant! The actual value from Nyquist’s theorem
is 1.38e-23. Plotting temperature against power
spectral density, again where Boltzmann’s constant
goes with the slope, we get figure 6.

III.II Shot Noise Results

For the first part, holding the lightbulbs current
fixed and varying the bandwidth range we calcu-
lated the average charge of an electron from our
data to be 1.90e-19. Our variation here was 1.77e-
20. Quite large, however, the variation within each
band was smaller so this may be due to ∆F vari-
ation. Recall the internal high pass filter is 16Hz
and the low pass is varied. We did not need to con-
sider the capacitive coupling of the wire connecting
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Figure 6: Power spectral density as a function of
temperature [3]:Data

to the dewar because that circuit is external to the
shot noise circuit.
Plotting the power spectral density vs Idc we

get a linear relationship. (Figure 7)

Figure 7: Bandwidth as a function of < I2shot.
[3]:Data

This makes sense. More noise will pass through
the filters if the ∆F is larger. This plot shows that
< I2shot > goes with ∆F

III.III Shot Noise Photocurrent De-
pendence

Next, we vary Idc to calculate the charge of an elec-
tron. We hold ∆F constant. In our case ∆F =
111650.
We can once again calculate the component of

noise not attributed to shot noise by turning off
the light. This is:

< V 2
n >

Vout ∗ 10
(100 ∗G2) ∗ ∗2

From our data on Vdc and Vout we calculated a col-
umn of Ishot, Idc, S and e, the charge of an electron.

Recalling:

< I2shot >=
(10 ∗ Vout/((100 ∗G2) ∗ ∗2)− < V 2

n >)

(Rf ∗ ∗2)

e =
< I2shot >

2Idc∆F

With this we get the charge of the electron
mean as: 1.61e-19 with a variation of 2.63e-21.
This is much better than our bandwidth varying
measurement.

Figure 8: Power spectral density as a function of
current through the photo diode [3]:Data

This slope goes with the charge of an electron
given the mathematics shown in II.III.

IV Conclusion

In conclusion, we were able to find the charge of an
electron and Boltzmann’s constant with a small un-
certainty. For the charge of an electron, we will take
our second value with the lower variation, 1.61e-
19±2.55e− 21 Coulombs. The actual value for the
charge of the electron is 1.602e-19 Coulombs. For
the Boltzmann’s constant using the temperature
dependent data we get 1.36e-23m2kgs−2K−1 with
a variation of 5.51e-26. The actual value is 1.38e-
23m2kgs−2K−1. I believe the resistance data is
less reliable for a few reasons. Firstly, the 10Ω re-
sistor consistently returned higher values for noise
than it should’ve whereas the other resistors did
not. I believe this is because it likely has a slightly
higher resistance than the 10Ω advertised. Even
a 1Ω increase could explain the unexpectedly high
noise for this resistor. Unfortunately, its internal to
the machinery so we didn’t want to take it apart to
measure it. It could also be that a higher propor-
tion of the noise was non-Johnson noise, and since
we were measuring a very small amount of noise
(since the resistor is relatively small) we may have
overestimated. Vn
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Our power spectral density relation graphs
match our expectations, if we had more time we
would liked to have investigated the power spectral
density relations to other variables to confirm that
they match the current literature.
Finally, to quickly compute entire columns of

data, I created a simple python program. It is cited
below. The lab manual and data are also referenced
below. This is where variation was calculated.
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